Temporal resolution of dynamic angiography using flat panel volume CT: in vivo evaluation of time-dependent vascular pathologies.

نویسندگان

  • R Gupta
  • A Mehndiratta
  • A P Mitha
  • M Grasruck
  • C Leidecker
  • C Ogilvy
  • T J Brady
چکیده

BACKGROUND AND PURPOSE Recently introduced fpVCT scanners can capture volumetric (4D) time-varying projections enabling whole-organ dynamic CTA imaging. The main objective of this study was to assess the temporal resolution of dynamic CTA in discriminating various phases of rapid and slow time-dependent neurovascular pathologies in animal models. MATERIALS AND METHODS Animal models were created to assess phasic blood flow, subclavian steal phenomena, saccular aneurysms, and neuroperfusion under protocols approved by the SRAC. Animals with progressively increasing heart rate-Macaca sylvanus (~100 bpm), Oryctolagus cuniculus (NZW rabbit) (~150 bpm), Rattus norvegicus (~300 bpm), Mus musculus (~500 bpm)-were imaged to challenge the temporal resolution of the system. FpVCT, a research prototype with a 25 × 25 × 18 cm coverage, was used for dynamic imaging with the gantry rotation time varying from 3 to 5 seconds. Volumetric datasets with 50% temporal overlap were reconstructed; 4D datasets were analyzed by using the Leonardo workstation. RESULTS Dynamic imaging by using fpVCT was capable of demonstrating the following phenomena: 1) subclavian steal in rabbits (ΔT ≅ 3-4 seconds); 2) arterial, parenchymal, and venous phases of blood flow in mice (ΔT ≅ 2 seconds), rabbits (ΔT ≅ 3-4 seconds), and Macaca sylvanus (ΔT ≅ 3-4 seconds); 3) sequential enhancement of the right and left side of the heart in Macaca sylvanus and white rabbits (ΔT ≅ 2 seconds); and 4) different times of the peak opacification of cervical and intracranial arteries, venous sinuses, and the jugular veins in these animals (smallest, ΔT ≅ 1.5-2 seconds). The perfusion imaging in all animals tested was limited due to the fast transit time through the brain and the low contrast resolution of fpVCT. CONCLUSIONS Dynamic imaging by using fpVCT can distinguish temporal processes separated by >1.5 seconds. Neurovascular pathologies with a time constant >1.5 seconds can be evaluated noninvasively by using fpVCT.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of Small Animal Computed Tomography Imaging for in vitro and in vivo Studies

Introduction: Mini Computed Tomography (mini-CT) was suggested in biomedical research to investigate tissues and small animals. We present designed and built a mini x-ray computed tomography (mini-CT) for small animals as well as industrial component imaging. Materials and Methods: The system used in this study includes a X-ray tube 20kV to 160kV and a flat pa...

متن کامل

4D digital subtraction angiography: implementation and demonstration of feasibility.

BACKGROUND AND PURPOSE Conventional 3D-DSA volumes are reconstructed from a series of projections containing temporal information. It was our purpose to develop a technique which would generate fully time-resolved 3D-DSA vascular volumes having better spatial and temporal resolution than that which is available with CT or MR angiography. MATERIALS AND METHODS After a single contrast injection...

متن کامل

Experimental flat-panel high-spatial-resolution volume CT of the temporal bone.

BACKGROUND AND PURPOSE A CT scanner employing a digital flat-panel detector is capable of very high spatial resolution as compared with a multi-section CT (MSCT) scanner. Our purpose was to determine how well a prototypical volume CT (VCT) scanner with a flat-panel detector system defines fine structures in temporal bone. METHODS Four partially manipulated temporal-bone specimens were imaged ...

متن کامل

Three-dimensional imaging and cone beam volume CT in C-arm angiography with flat panel detector.

We evaluated a new 3D angiography system with a flat panel detector (FPD) for its capabilitiy to acquire volume sets during a single rotation scan and to reconstruct high spatial resolution three-dimensional and cross sectional images, namely cone beam volume computed tomography (CBVCT) images. Present status of the technique, advantages and potential applications are discussed.

متن کامل

Evaluation of an Acute Stroke Patient with Flat Detector CT Prior to Mechanical Thrombectomy

Flat panel detectors have revolutionized tomographic imaging in the angio suite. Recent developments in hardware and software have improved soft tissue resolution and acquisition time even further, enabling soft-tissue and perfusion imaging within the angio suite. The so called “one-stop-shop” stroke imaging with flat panel detector computed tomography (FDCT) will significantly improve door to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • AJNR. American journal of neuroradiology

دوره 32 9  شماره 

صفحات  -

تاریخ انتشار 2011